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Lecture 12                      2012/12/17 
 
Outline 
 
1. Motivation 
2. Lyapunov Stability of Autonomous Systems  
3. Lyapunov Stability of Linear Systems with Constant Coefficients   
4. Summary 
 
1. Motivation  

 
•  Lyapunov method is one of the most important tools in nonlinear systems. It is 

extremely important in analysis of stability of autonomous systems. It works not 
only for the local, but also for the global.  

•  Lyapunov method has a widespread use in mathematics, control sciences, 
engineering, physics, etc. 

 
2. Lyapunov Stability of Autonomous Systems  
 

Consider an autonomous system  

         )(xfx = ,                          (12.1) 

where nRDf →:  is locally Lip., nD R⊆  and (0) 0f = .  

We say that system (12.1) is complete if for any initial state 0x D∈ , the 

solution 0( ; )x x t x=  of (12.1) exists for all 0≥t . That is, there is no blow-up for 

any 0
nx D R∈ ⊆ . 

 
1)  Statement of Lyapunov Theorem for AS 
 

Theorem 12.1 Let RDV →:  be of 1C  such that  

0)0( =V  and 0)( >xV  in }0{−D ;              (12.2a) 

    0)( ≤xV  in D .                     (12.2b) 

Then, 0=x  is stable. Moreover, if 

0)( <xV  in }0{−D ,                   (12.2c) 

then 0=x  is asymptotically stable. 
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Remark 12.1 If )(xV  satisfies (12.2a), it is said positive definite. 

 
2) Interpretation of Lyapunov conditions 
 

Fact 1. If ( ) 0V x > , then there exists 0>∗c  such that for all ),0( ∗∈ cc , then the set 

})(|{: cxVRxV n
c =∈=  is a compact set encircling the origin – which is said to be a 

Lyapunov surface; 
 

Remark 12.2 If ( ) 0V x > , we can’t conclude that for any 0c > , cV  is compact. For 

example, 
2
12

1 2 2 2
1

( , ) 0
1

x
V x x x

x
= + >

+
; for 0 1c< < , 1 2( , )V x x c=  is compact; and 

for 1c > , 1 2( , )V x x c=  is not compact. See Fig. 12.1 

 
Fig. 12.1 

 

Fact 2. The derivative of )(xV  along trajectories of the system (12.1) is: 

)()( xf
x
VxV ⋅
∂
∂

= , 

which is an inner product of the gradient of V , a normal direction at x  of a 

Lyapunov surface, and )(xf , a tangent direction at the same point x  of the same 

Lyapunov surface; i.e. cosine of the included angle of such two particular vectors. 
 

Fact 3. If ( ) 0V x < , i.e. cosine of the included angle of above two particular vectors 

is within ( , 0)
2
π

− , then, the trajectories move inside the Lyapunov surface cV .  
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3)  Proof of Lyapunov Theorem for AC 
 
Stability: 

Step 1. Given 0>ε , choose ],0( ε∈r  such that 

{ | || || }n
rB x R x r D= ∈ ≤ ⊂ . 

Step 2. Let 
|| ||
min ( )
x r

V xα
=

= . Then, 0>α  since ( ) 0V x > , 0x ≠ . Take ),0( αβ ∈ , 

and let 

{ | ( ) }rx B V xβ βΩ = ∈ ≤ . 

Then, βΩ  is in the interior of rB  by definition.  

Step 3. βΩ  is invariant because 0( ( )) ( )V x t V x β≤ ≤  for all 0t ≥  by (12.2b). 

Step 4. βΩ  is compact because it is closed by definition and bounded since 

rBβΩ ⊂ . Hence, the system (12.1) has a unique solution for all 0≥t  whenever 

0x β∈Ω  by Continuation Theorem.  

Step 5. Since )(xV  is continuous and 0)0( =V , there is 0>δ  such that 

|| ||x δ≤  ⇒  β<)(xV . 

Then, 

rB Bδ β⊂ Ω ⊂  

and 

0x Bδ∈  ⇒  0x β∈Ω  ⇒  ( )x t β∈Ω  ⇒  ( ) rx t B∈ . 

Therefore, for any given 0ε > , there exists 0δ >  s.t.  

0|| ||x δ<  ⇒  || ( ) ||x t r ε< ≤ , for all 0t ≥ . 

0=x  is stable by definition. See Fig. 12.2.  
 
Attractivity:  
 

To show lim ( ) 0
t

x t
→+∞

= , we need to show that for any 0ε > , there exists 0T >  

s.t. || ( ) ||x t ε≤  for all t T≥ .  
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Fig. 12.2 

In the proof of stability, we have shown that for any 0ε >  with Bε  in D , 

there exists 0η >  such that Bη εΩ ⊂  and ηΩ  is invariant.  

For any 0x η∈Ω , ( )x t η∈Ω  for all 0t ≥ . Since ))(( txV  is monotonically 

decreasing by (12.2c) and bounded below by zero. Therefore, lim ( ( )) 0
t

V x t c
→+∞

= ≥  

exists.  

Now we show 0c = . Otherwise, we suppose 0>c . Since )(xV  is continuous, 

there exists 0>d  s.t. d cB η⊂ Ω ⊆ Ω . Then, since lim ( ( )) 0
t

V x t c
→+∞

= > , there exists 

0T >  such that )(tx  lays outside the ball dB  for all t T≥ .  

Let 
|| ||

max ( )
d x

V x
η

γ
≤ ≤

− =  , which exists because )(xV  is continuous and has a 

maximum over the compact set { || || }d x η≤ ≤ . By (12.2c), 0<− γ , and this 

implies 

0 00
( ( )) ( ) ( ( )) ( )

t
V x t V x V x s d s V x tγ= + ≤ −∫  , t T≥ . 

For t T>> , ( ( )) 0V x t < . This contradicts ( ) 0V x ≥  for all x . Therefore, we have 

lim ( ( )) 0
t

V x t
→+∞

= , which implies lim ( ) 0
t

x t
→+∞

=  by (12.2a). □ 

 
Remark 12.3 Theorem 12.1 is a local result. For the global, we need an additional 

condition to make sure that Lyapunov surface })(|{: cxVRxV n
c =∈=  is compact 

(closed and bounded in nR ) for any 0c >  without the broken.  
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4) Lyapunov Theorem for GAS 
 

Theorem 12.2 (Barbashin-Krasovskii Theorem) Let : nV R R→  be of 1C  such 

that 

0)0( =V  and 0)( >xV , 0x∀ ≠ ;                 (12.3a) 

|| ||x →∞  ⇒  ∞→)(xV ;                    (12.3b) 

0)( <xV , 0x∀ ≠ .                       (12.3c) 

Then, 0=x  is globally asymptotically stable (GAS in short). 

Proof. For any nx R∈ , let ( )c V x= . The condition (12.3b) implies that for such a 

0>c , there exists 0>r  s.t. cxV >)(  whenever || ||x r> . Thus, c rBΩ ⊂ , which 

implies that cΩ  is bounded. Then, the rest of the proof is similar to that of Theorem 

12.1. □ 
 
Remark 12.4 The condition (12.3b) is said to be radially unbounded. If (12.1) is 
GAS, then, the equilibrium must be unique. (why!) 
 

Remark 12.5 cΩ  plays an important role in analysis of Lyapunov theory. It can be 

found application in estimates of region of attraction. 
 
5) Lyapunov Theorem for Unstability 
 
Two facts:  

Fact 1. 0)( >xV  plus 0)( >xV  ⇒  the origin is unstable. 

Fact 2. When testing instability, the above conditions can be relaxed. 
 

Theorem 12.3 (Chetaev Theorem) Let RDV →:  be of 1C  s.t. 0)0( =V  and 

0( ) 0V x >  for some 0x  with arbitrarily small |||| 0x . Define { | ( ) 0}rU x B V x= ∈ >  

and suppose that 0)( >xV  in U . Then, 0=x  is unstable. 

Proof. Since 0( ) 0V x a= > , so 0x ∈U . )(tx  starting at 0(0)x x=  will leave U . 

To see this point, if )(tx ∈U  ⇒  ( ( ))V x t a≥ , since 0)( >xV  in U . Let 
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min{ ( ) |V x x Uγ = ∈  and ( ) }V x a≥ , 

which exists since the continuous function )(xV  has a minimum over the compact 

set Ux∈{  and ( ) }V x a≥ . Then, 0>γ  and 

0 0 0
( ( )) ( ) ( ( ))

t t
V x t V x V x s ds a ds a tγ γ= + ≥ + = +∫ ∫ . 

This inequality shows that lim ( ( ))
t

V x t
→+∞

= ∞ . It implies that )(tx  cannot stay forever in 

U  because )(xV  is bounded on U . Now, )(tx  cannot leave U  through the 

surface 0)( =xV  since atxV ≥))((  for all 0t ≥ . Hence, it must leave U  through 

the sphere || ||x r= . Since it can happen for an arbitrarily small |||| 0x , the origin is 

unstable. □ 
 
Remark 12.6 Since U  is not necessarily a neighborhood of the origin, then 

1) )(xV  in Chetaev Theorem does not have to be positive definite! 

2) )(xV  in Chetaev Theorem does not have to be positive definite! 

 
6) Examples  
 
Example 12.1 Consider  

2 2
1 1 2 1 1 2

2 2
2 1 2 1 1 2

( )
( )

x ax x k x x x
x x ax k x x x
′ = − + +

 ′ = − + +
,                  (12.4) 

where 0a > , 1a ≠ , and k  is a parameter. Clearly, the origin is equilibrium. The 
linearization gives  

1
1
a

A
a
− 

=  − 
 

with 2 1aλ = ± −  and 2 2
1 1 2 2 1 2 1 1 2( , ) ( , ) ( )g x x g x x k x x x= = +  satisfying 

|| ||

|| ( ) ||lim 0
|| ||x

g x
x→∞

= .                      (12.5) 

If 1a > , the origin is a saddle point, which is unstable. Then, (12.4) is also 
unstable by linearization.  

If 0 1a< < , the origin is a center, which is stable but not AS. The linearization 
fails this time. However, the linearized system has the equation for trajectories given 
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by 

2 1 2

1 1 2

d x x ax
d x ax x

−
=

−
, 

whose general solution is solved by  
2 2
1 1 2 22x ax x x c− + =  .  

These trajectories are ellipses if 0c > . The trajectory is the origin if 0c =  (See 
Remark 12.7). So it can be taken as a Lyapunov function candidate for (12.4) 

2 2
1 2 1 1 2 2( , ) 2V x x x ax x x= − + , 

which is positive definite. Taking derivative along trajectories results in  
2 2 2 2

1 2 1 2 1 2 1 2( , ) 2 ( )( 2 )V x x k x x x x ax x= + + − . 

Then, 1 2( , ) 0V x x <  if 0k <  and 1 2( , ) 0V x x >  if 0k > . We conclude that (12.4) 

is AS if 0k <  by Theorem 12.1 and it is unstable if 0k >  by Theorem 12.3. 

Moreover, (12.4) is GAS because 2 2
1 2 1 2 1 1 2 2( , ) {( , ) | 2 0}cV x x x x x ax x x c= − + = >  is 

a Lyapunov surface of ellipses for all 0c > , which clearly satisfy the radially 
unbounded condition (12.3b).   
 
Remark 12.7 The general conic equation is given by  

2 22 2 2 0Ax Bxy Cy Dx Ey F+ + + + + = ,               (12.6) 

where A , B  and C  are not all zero. If 1 3 0∆ ⋅∆ <  and 2 0∆ > , then (12.6) is an 

ellipse, where  

1 A C∆ = + , 2

A B
C D

D = , 3

A B D
B C E
D E F

D = .  

In Example 12.1, 1A = , B a= − , 1C = , 0D = , 0E =  and F c= −  . It is easy to 

be verified that when 0 1a< < , 2 2
1 1 2 22x ax x x c− + =   for all 0c >  are ellipses.  

 
Example 12.2 Consider the pendulum equation without friction: 

1 2

2 1sin

x x
gx x
l

=



= −





. 

Take the energy function 
2

1 2
1( ) (1 cos )
2

gV x x x
l

= − + . 
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Clearly, 0)0( =V  and ( ) 0V x >  is over 12 2xπ π− < < .  

1 1 2 2 2 1 2 1( ) sin sin sin 0g g gV x x x x x x x x x
l l l

= + = − =

  . 

⇒  The origin is stable. Since 0)( ≡xV , ⇒  ( ( )) 0V x t c≡ >  ⇒  lim ( ) 0
t

x t
→∞

≠ , the 

origin is not AS.  
 
Example 12.3 Consider the pendulum equation with friction: 

1 2

2 1 2sin

x x
g kx x x
l m

=



= − −





.                     (12.7) 

Let us try again 2
1 2

1( ) (1 cos )
2

gV x x x
l

= − + . Since 

2
1 1 2 2 2( ) sin 0g kV x x x x x x

l m
= + = − ≤

  , 

⇒  The origin is stable only. However, the experience tells that it is AS because of 
the friction.  
 
Remark 12.8 We may apply the finer Lyapunov function to (12.7) as follows.  

11 12 1
1 1 2 1

21 22 2

1 1( ) (1 cos ) ( , ) (1 cos )
2 2

T p p xg gV x x Px x x x x
p p xl l

  
= + − = + −  

  
, 

where P  is positive definite. Try to determine the elements i jp  of P  such that 

( ) 0V x < . (Homework).  

 
Example 12.4 Consider the system 

1 1 1

2 2 2

( )
( )

x x g x
x x g x

= +
 = − +





,  

where 1( )g x  and 2 ( )g x  satisfy 

2| ( ) | || ||jg x k x≤  

near the origin. Consider the function 
2 2
1 2

1( ) ( )
2

V x x x= − . 

On the line 2 0x = , 0)( >xV  at points arbitrarily close to the origin. The derivative 

of )(xV  is given by 
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2 2
1 2 1 1 2 2( ) ( ) ( )V x x x x g x x g x= + + − . 

The magnitude of the term 1 1 2 2( ) ( )x g x x g x−  satisfies the inequality 

2
3

1 1 2 2
1

| ( ) ( ) | | | | ( ) | 2 || ||j j
j

x g x x g x x g x k x
=

− ≤ ⋅ ≤∑ . 

Hence, 
2 3 2( ) || || 2 || || || || (1 2 || ||)V x x k x x kr x≥ − = − . 

Choosing r  such that rB D⊂  and 
k

r
2
1

< , all the conditions of Chetaev Theorem 

are satisfied and the origin is unstable. 
 
3. Lyapunov Stability of Linear Systems with Constant Coefficients 
 

Consider the linear system as follows 
Axx = .                           (12.8) 

If all eigenvalues of A  satisfy 0Re <jλ , A  is said a Hurwitz matrix.  

 
1) Lyapunov Method  
 

Consider a quadratic Lyapunov function candidate 

( ) TV x x P x= , 

where P  is a real symmetric positive definite matrix. The derivative of V  along 
the trajectories of (12.8) is given by 

( ) ( )T T T T TV x x P x x P x x PA A P x x Q x
Λ

= + = + = −

  , 

where Q  is a symmetric matrix defined by 

TP A A P Q+ = − .                       (12.9) 

If Q  is positive definite, we can conclude by Theorem 12.1 that the origin is AS 

 
Remark 12.9 (12.9) is called a Lyapunov equation of the system (12.8).  
 
Theorem 12.4 A  is Hurwitz if and only if for any given positive definite symmetric 

matrix Q , there exists a positive definite symmetric matrix P  that satisfies (12.9). 

Moreover, P  is unique for each given Q  in (12.9). 
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Proof. ( )⇐  Done.  

( )⇒  If A  is Hurwitz, define  

0
exp( ) exp( )TP A t Q At dt

∞
= ∫ .                (12.10) 

This integral (12.10) is well defined because A  is Hurwitz. TP P=  by definition. 
To show P  is positive definite, we use contradiction. If there were 0x ≠  such that 

0Tx P x = . Then,  

0Tx P x =  ⇒  
0

exp( ) exp( ) 0T Tx A t Q At x dt
∞

=∫  ⇒  0)exp( ≡xAt , 0≥∀t  

 ⇒  0=x . 
This contradiction shows that P  is positive definite. Since  

0 0
exp( ) exp( ) exp( ) exp( )T T T TPA A P A t Q At Adt A A t Q At dt

∞ ∞
+ = +∫ ∫  

          00
exp( ) exp( ) exp( ) exp( ) |T Td A t Q At dt A t Q At Q

d t
∞ ∞= = = −∫ , 

which shows that P  is solution of (12.9). To show uniqueness, suppose there is 

another solution PP ≠~ . Then, 

0)~()~( =−+− PPAAPP T . 

Pre-multiplying by exp( )TA t  and post-multiplying by )exp(At , we obtain 

0 exp( )[( ) ( )]exp( ) exp( )( ) exp( )T T TdA t P P A A P P At A t P P At
dt

= − + − = −   . 

Hence, 

exp( )( ) exp( )TA t P P At− ≡ constant, 0t∀ > . 

In particular, since 0exp( ) | tAt I= = , we have 

0exp( )( ) exp( ) | exp( )( ) exp( ) 0T T
tP P A t P P At A t P P At=− = − ≡ − →    as ∞→t . 

Therefore, PP =~ . □ 

 
2)  Linearization by Lyapunov Method  
 

Let us go back to the nonlinear system  

)(xfx = ,                         (12.11) 
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where nRDf →:  is 1C  and (0) 0f = . Then we write (12.11) as  

  ( ) ( )f x Ax g x= + ,                    (12.12) 

where 

(0)A D f= , and 
|| || 0

|| ( ) ||lim 0
|| ||x

g x
x→

= .  

Theorem 12.5 (Linearization) 

1. The origin of (12.12) is AS if Re 0jλ <  for all eigenvalues of A . 

2. The origin of (12.12) is unstable if Re 0jλ >  for one or more of the eigenvalues 

of A . 
Proof. Let A  be a Hurwitz matrix. Then, by Theorem 12.4, for any positive definite 

symmetric matrix Q , the solution P  of the Lyapunov equation (12.9) is positive 

definite. We use 

( ) TV x x Px=  

as a Lyapunov function candidate for (12.12). The derivative of )(xV  along the 

trajectories of (12.12) is given by 

( ) [ ( )] [ ( )] ( ) 2 ( )T T T T T T TV x x P Ax g x x A g x Px x P A A p x x Pg x= + + + = + +  

        2 ( )T Tx Qx x Pg x= − + . 

Since 
|| || 0

|| ( ) ||lim 0
|| ||x

g x
x→

= , there exists 0>r  for any given 0>γ  such that 

|| ( ) || || ||g x xg< , || ||x r∀ < . 

Hence, 
2( ) 2 || || || ||TV x x Qx P xγ< − + , || ||x r∀ < , 

but 
2

min ( ) || ||Tx Qx Q xλ− ≥  

Note that min ( )Qλ  is real and positive since Q  is symmetric and positive definite. 

Thus 
2

min( ) [ ( ) 2 || ||] || ||V x Q P xλ γ< − − , || ||x r∀ < . 
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Choosing min ( )
2 || ||

Q
P

λ
γ <  ensures that )(xV  is negative definite. By Theorem 12.1, 

we conclude that the origin of (12.12) is AS.  
 

To prove the second part of the theorem, let us consider first the special case 
when A  has no eigenvalues on the imaginary axis. Then there exists an invertible 
matrix T  such that 

11

2

0
0
A

T AT
A

−
− 

=  
 

 

where 1A  and 2A  are Hurwitz matrices. The change of variables  

1

2

z
z T x

z
 

= =  
 

 

transforms (12.12) into the form 

1 1 1 1

2 2 2 2

( )
( )

z A z g x
z A z g x

= − +
 = − +





, 

where ( )jg z  satisfies 

| ( ) | || ||jg z zg< , || ||z r∀ ≤ , 1, 2j = . 

Let 1Q  and 2Q  be positive definite symmetric matrices. Solving 

T
j j j j jP A A P Q+ = − , 1, 2j = , 

yields a unique positive definite solutions 1P  and 2P . Let 

1
1 1 1 2 2 2

2

0
( )

0
T T T P

V z z P z z P z z z
P

 
= − =  − 

. 

In the subspace 02 =z , 0)( >zV  at points arbitrarily close to the origin. Let 

{ | || ||nU z R z r= ∈ ≤  and ( ) 0 }V z > . 

In U ,  

   1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2( ) ( ) 2 ( ) ( ) 2 ( )T T T T T TV z z P A A P z z P g z z P A A P z z P g z= − + + − + −  

       1 1
1 1 1 2 2 2

2 2

( )
2

( )
T T T P g z

z Q z z Q z z
P g z

 
= + +  − 
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       2 2 2 2 2 2
min 1 1 min 2 2 1 1 2 2( ) || || ( ) || || 2 || || || || || ( ) || || || || ( ) ||Q z Q z z P g z P g zλ λ≥ + − +  

      2( 2 2 ) || ||zα β γ> − , 

where  

min 1 min 2min{ ( ), ( )}Q Qα λ λ= . 1 2max{|| ||, || ||}P Pβ = . 

Thus, choosing 
β

αγ
22

<  ensures that 0)( >zV  in U . Therefore, by Theorem 

12.3, the origin of (12.12) is unstable.  
 
Remark 12.10 Notice that we could have applied Theorem 12.3 in the original 
coordinates by defining the matrices 

1

2

T P O
P T T

O P
 

=  − 
 and 1

2

T Q O
Q T T

O Q
 

=  
 

 

which satisfy 
TP A A P Q+ = . 

Q  is positive definite, and ( ) 0TV x x P x= >  for points arbitrarily close to 0=x . 

 
Let us study now the general case when A  may have eigenvalues on the 

imaginary axis meanwhile A  has eigenvalues with positive real parts. By a simple 
trick of shifting the imaginary axis, we suppose A  has m  eigenvalues with 

Re 0jλ δ> > . Then, the matrix IA
2
δ

−  has m  eigenvalues in the open right-half 

plane, but no eigenvalues on the imaginary axis. Then, there exist TP P= and 
TQ Q=  such that 

( ) ( )
2 2

TP A I A I P Qδ δ
− + − = , 

where ( ) TV x x Px=  is positive definite for points arbitrarily close to the origin. The 

derivative of )(xV  along the trajectories of (12.12) is given by 

         ( ) ( ) 2 ( )T T TV x x P A A p x x Pg x= + +   

             [ ( ) ( ) ] 2 ( )
2 2

T T T Tx P A I A I P x x Px x Pg xδ δ δ= − + − + +      

             ( ) 2 ( )T Tx Qx V x x Pg xδ= + + . 

In the set 
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{ | || ||nU x R x r= ∈ ≤  and }0)( >xV , 

where r  is chosen such that || ( ) || || ||g x xg≤  for || ||x r< , )(xV  satisfies 

)(xV 2
min ( ) || || 2 || || || || || ( ) ||Q x P x g xλ≥ − 2

min( ( ) 2 || ||) || ||Q P xλ γ≥ − , 

which is positive definite if min ( )
2 || ||

Q
P

λ
γ < . The origin of (12.12) is unstable. □ 

 

Remark 12.11 Theorem 12.5 does not say anything about the case when Re 0jλ ≤  

for all j , with Re 0jλ =  for some j . In this case, linearization fails to determine 

stability of equilibrium. Center manifold theory may apply.  
 

Example 12.5 For 3x ax= , where a  is a parameter. Linearization yields 

2
0(0) 3 | 0xA D f a x == = = . 

Hence, linearization fails. This failure is essential in the sense that 0x =  could be 
AS, stable, or unstable, depending on the value of the parameter a .  

    Take 4( ) 0V x x= >  as a Lyapunov function. 6( ) 4 .V x ax=  Then,  

If 0<a , ( ) 0V x <  ⇒  0x =  is AS . If 0=a , ( ) 0V x ≡  ⇒  0x =  is stable. If 

0>a , ( ) 0V x >  ⇒  0x =  is unstable.  

 
4. Summary  
 
•  Theorem 12.1-12.3 consist of the classical theory of Lyapunov method. 
LaSalle-Krosovskii Theorem is the starting of the modern one.  
 
•  GAS is more interesting for engineering application because it is no need for the 
estimation of a region of attraction, which is usually a tough work. However, GAS 
requirement is more demanding. In control, people hope to get (robustly) globally 
asymptotical stabilization by feedback (refer to feedback control), or moreover, to 
meet some additional optimized condition (refer to optimized control).  
 
Homework  
 
1. Study the stability of the pendulum equation with friction 



 15 

1 2

2 1 2sin

x x
g kx x x
l m

=



= − −





 

by linearization.  


